A Vector-valued Sharp Maximal Inequality on Morrey Spaces with Non-doubling Measures

نویسندگان

  • YOSHIHIRO SAWANO
  • Y. SAWANO
چکیده

We consider the vector-valued extension of the Fefferman–Stein– Strömberg sharp maximal inequality under growth condition. As an application we obtain a vector-valued extension of the boundedness of the commutator. Furthermore, we prove the boundedness of the commutator. 2000 Mathematics Subject Classification: Primary 42B35; Secondary 42B25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector - valued sharp maximal inequality on the Morrey spaces with non - doubling measures

In this paper we consider the vector-valued extension of the Fefferman-Stein-Stronberg sharp maximal inequality under growth condition. As an application we obtain the vectorvalued extension of the boundedness of the commutator. Furthermore we prove the boundedness of the commutator.

متن کامل

Morrey spaces for non-doubling measures

We give a natural definition of the Morrey spaces for Radon measures which may be non-doubling but satisfy the growth condition. In these spaces we investigate the behavior of the maximal operator, the fractional integral operator, the singular integral operator and their vector-valued extensions.

متن کامل

Sharp maximal inequalities and commutators on Morrey spaces with non-doubling measures

In this paper, related to RBMO, we prove the sharp maximal inequalities for the Morrey spaces with the measure μ satisfying the growth condition. As an application we obtain the boundedness of commutators for these spaces.

متن کامل

Equivalent norms for the ( vector - valued ) Morrey spaces with non - doubling measures

In this paper under some growth condition we investigate the connection between RBMO and the Morrey spaces. We do not assume the doubling condition which has been a key property of harmonic analysis. We also obtain another type of equivalent norms.

متن کامل

A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator

We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006